A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

نویسندگان

  • Maurizio Tavelli
  • Michael Dumbser
چکیده

We propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. The scheme is based on the general ideas proposed in [1] for the two dimensional incompressible Navier-Stokes equations and is then extended to three space dimensions in [2]. As typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similar to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this presentation could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discontinuous Galerkin Method for the Navier-Stokes Equations on Deforming Domains using Unstructured Moving Space-Time Meshes

We describe a high-order accurate space-time discontinuous Galerkin (DG) method for solving compressible flow problems on two-dimensional moving domains with large deformations. The DG discretization and space-time numerical fluxes are formulated on a three-dimensional space-time domain. The scheme is implicit, and we solve the resulting non-linear systems using a parallel Newton-Krylov solver....

متن کامل

A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations

We present a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier-Stokes equations in convection-dominated flows using triangular and tetrahedral meshes. The scheme is based on a semi-explicit temporal discretization with explicit treatment of the nonlinear term and implicit treatment of the Stokes operator. The nonlinear term is discretized in divergence form ...

متن کامل

An Output-Based Adaptive Hybridized Discontinuous Galerkin Method on Deforming Domains

In this paper we present an output-based adaptive method for unsteady simulations of convection-dominated flows on deformable domains. The target discretization is the hybridized discontinuous Galerkin method (HDG), which offers potential computational savings at high order compared to the discontinuous Galerkin (DG) method. Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian ...

متن کامل

Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow

The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equa...

متن کامل

Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes

We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 319  شماره 

صفحات  -

تاریخ انتشار 2016